The effects of bariatric surgery procedures on the gut microbiota, features of genetically mediated predisposition to obesity, forecasting algorithms for surgical treatment outcomes. Literature review




obesity, obese patients, Roux‑en‑Y gastric bypass, research, body mass index, gut microbiome, weight loss


Obesity is one of the major challenges facing modern medicine in the 21st century. Medically complicated obesity cases lead to a significant deterioration in quality of life and are associated with excess morbidity and increased mortality. According to the WHO, more than 24 % of the world's population over 18 years of age is overweight. About 3.9 million people of working age died in 2018 due to obesity and its complications. Today, bariatric surgery is the most effective in treating obesity, as it allows achieving optimal metabolic outcomes. After bariatric surgery, the desired effect can be produced by the response of the intestinal microbiome to postoperative anatomical and physiological changes in the gastrointestinal tract.

The aim of this study was to conduct a comprehensive literature review and evaluate the effects of bariatric surgery on the human intestinal microbiome.

The literature review revealed a stable correlation between quantitative and qualitative characteristics of the intestinal microbiota and bariatric surgery, regardless of the type of a bariatric surgical operation. Roux‑en‑Y Gastric Bypass, Mini‑Gastric Bypass and Sleeve Gastrectomy are the most commonly used bariatric operations in the world. The outcomes of these procedures show a sharp change in the proportion of different microbial phyla, including Firmicutes, Bacterioides and Escherichia, as well as changes in the gene expression parameters of these groups at different time periods after surgery.

An increasing number of the reported bariatric interventions worldwide necessitates the study of pathophysiological mechanisms of intermicrobial relationships, which can contribute to better outcomes of surgical treatment of obesity and the development of algorithms for predicting them.


Author Biography

P. A. Kobzar, Bogomolets National Medical University, Kyiv

Department of General Surgery N 2


Anhê FF, Varin TV, Schertzer JD, Marette A. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Canad J Diab. 2017 Aug; 41(4):439-447. doi: 10.1016/j.jcjd.2017.02.002.

Aron-Wisnewsky J, Doré J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2012; 9:590-8. doi: 10.1038/nrgastro.2012.161.

Aron-Wisnewsky J, Prifti E, Belda E, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019 Jan; 68(1):70-82. DOI: 10.1136/gutjnl-2018-316103

Arterburn DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013 Jan; 23:93-102. doi: 10.1007/s11695-012-0802-1.

Brethauer SA, Aminian A, Romero-Talamas H, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013 Oct; 258:628-36. doi: 10.1097/SLA.0b013e3182a5034b.

Brosnan C, Bolger JC, et al. Options in Bariatric Surgery: Modeled Decision Analysis Supports One-Anastomosis Gastric Bypass as the Treatment of Choice when Type 2 Diabetes Is Present. Obes Surg. 2020 Dec; 30(12):5001-5011.

Bueter M, Abegg K, et al. Roux-en-Y gastric bypass operation in rats. JoVE. 2012 Jun 11; (64):39-40. doi: 10.3791/3940.

Campisciano G, Palmisano S, Cason C, et al. Gut microbiota characterization in obese patients before and after bariatric surgery. Benefic Microbes. 2018; 9:367-73. doi: 10.3920/BM2017.0152.

Cani PD. Severe Obesity and Gut Microbiota: Does Bariatric Surgery Really Reset the System? Gut. 2019; 68:5-6. doi: 10.1136/gutjnl-2018-316815.

Castaner O, Goday A, Park YM, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018 Mar 22; 2018:4095789. doi: 10.1155/2018/4095789.

Cătoi AF, Vodnar DC, et al. Gut Microbiota, Obesity, and Bariatric Surgery: Current Knowledge and Future Perspectives. Curr Pharm Des. 2019; 25:2038-2050. doi: 10.2174/1381612825666190708190437.

Chang C-S, Ruan J-W, Kao C-Y. An overview of microbiome based strategies on anti-obesity. Kaohsiung J Med Sci. 2019; 35:7-16. doi: 10.1002/kjm2.12010.

Ciobârcă D, Cătoi АF, et al. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients. 2020 Jan 16; 12(1):235. doi: 10.3390/nu12010235.

Cotillard A, Kennedy S, Kong L. et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013 January; 500:585-588. doi: 10.1038/nature12480.

Dao MC, Clément K. Gut microbiota and obesity: Concepts relevant to clinical care. Eur J Intern Med. 2018; 48:18-24. doi: 10.1016/j.ejim.2017.10.005.

Debédat J, Clément K, Aron-Wisnewsky J. Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Curr Obes Rep. 2019; 8:229-242. doi: 10.1007/s13679-019-00351-3.

Duncan S, Lobley G, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008; 32:1720-1724. doi: 10.1038/ijo.2008.155.

Ejtahed HS, Angoorani P, Hasani-Ranjbar S, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018 Mar; 116:13-21. doi: 10.1016/j.micpath.2017.12.074.

Fadrosh DW, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014 Feb 24; 2(1):6. DOI:

Ferrie S, Webster A, Wu B, et al. Gastrointestinal surgery and the gut microbiome: a systematic literature review. Eur J Clin Nutr. 2021 Jan; 75:12-25. DOI:10.1038/s41430-020-0681-9.

Furet JP, Kong LC, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010; 59:3049-57. doi: 10.2337/db10-0253.

Gagliardi A, Totino V, Cacciotti F, et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health. 2018 Aug 7; 15(8):1679. doi: 10.3390/ijerph15081679.

Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, et al. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe. 2017; 21:84-96. doi: 10.1016/j.chom.2016.12.006.

Guo Y, et al. Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes Metab Res Rev. 2017 Mar; 33(3). doi: 10.1002/dmrr.2857.

Guo Y, Huang ZP, Liu CQ, et al. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. 2018 Jan; 178:43-56. doi: 10.1530/EJE-17-0403.

Harmsen HJM, et al. Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol. 2000 Oct; 66(10):4523-4527. doi: 10.1128/aem.66.10.4523-4527.2000.

Jorgensen NB, Jacobsen SH, Dirksen C, et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab. 2012 Jul 1; 303:122-31. doi: 10.1152/ajpendo.00073.2012.

Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000; 28:27-30. doi: 10.1093/nar/28.1.27.

Kang Y, Cai Y. Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones. 2017 Jul; 16:223-34. doi: 10.14310/horm.2002.1742.

Ley R, Turnbaugh P, Klein S, et al. Human gut microbes associated with obesity. Nature. 2006; 444:1022-1023.

Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014; 32:834-41. doi: 10.1038/nbt.2942.

Ling-Chun Kong, Julien Tap, Judith Aron-Wisnewsky et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutrition. July 2013; 98 (1):16-24. doi: 10.3945/ajcn.113.058743.

Liu H, Hu C, Zhang X, et al. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J Diabetes Investig. 2018; 9:13-20. doi: 10.1111/jdi.1268.

Luijten J, Vugts G, Nieuwenhuijzen G, et al. The Importance of the Microbiome in Bariatric Surgery: a Systematic Review. Obes Surg. 2018 Mar 22; 29:2338-2349. doi: 10.1007/s11695-019-03863-y.

Magouliotis DE, Tasiopoulou VS, Sioka E, et al. Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis. Obes Surg. 2017 May; 27(5):1345-1357. doi: 10.1007/s11695-017-2595-8.

Medina DA, Pedreros JP, Turiel D, et al. Distinct Patterns in the Gut Microbiota after Surgical or Medical Therapy in Obese Patients. Peer J. 2017 Jun 20; 5:3443. doi: 10.7717/peerj.3443.

Murphy R, Evennett NJ, Clarke MG et al. Sleeve gastrectomy versus roux-en-Y gastric bypass for type 2 diabetes and morbid obesity: double-blind randomised clinical trial protocol. BMJ Open. 2016; 6:24-29. doi: 10.1136/bmjopen-2016-011416.

Murphy R, Tsai P, Jüllig M, et al. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes Surg. 2017 Apr; 27:917-925. doi: 10.1007/s11695-016-2399-2.

Norris SL, Zhang X, Avenell A, et al. Pharmacotherapy for weight loss in adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005;1:CD004096. doi: 10.1002/14651858.CD004096.pub2

Osto M, Abegg K, et al. Roux-en-y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol Behav. 2013 Jul 2; 119:92-6. doi: 10.1016/j.physbeh.2013.06.008.

Paganelli FL, Luyer M, Hazelbag CM et al. Roux-Y Gastric Bypass and Sleeve Gastrectomy directly change gut microbiota composition independent of surgery type. Sci Rep 9. 2019 Jul 29; 9(1):109-79. doi: 10.1038/s41598-019-47332-z.

Palleja A, Kashani A et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine. 2016 Jun 15;8(1):67. doi: 10.1186/s13073-016-0312-1.

Panunzi S, Carlsson L, De Gaetano A, et al. Determinants of diabetes remission and glycemic control after bariatric surgery. Diabetes Care. 2016 Jun; 39:166-74. doi: 10.2337/dc15-0575.

Sanchez-Alcoholado L, et al. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries. Surg Obes Relat Dis. 2019 Nov;15(11):1888-1895. doi: 10.1016/j.soard.2019.08.551.

Schauer PR, Bhatt DL, Kirwan JP et al. Bariatric surgery versus intensive medical therapy for diabetes- 5-year outcomes. N Engl J Med. 2017; 376:641-51. DOI: 10.1056/NEJMoa1600869.

Shao Y, Ding R et al. Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats. Obes Surg. 2017 Feb; 27:295-302. doi: 10.1007/s11695-016-2297-7.

Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012; 307:56-65. doi: 10.1001/jama.2011.1914.

Smith CD, Herkes SB, Behrns KE, Fairbanks VF, Kelly KA, Sarr MG. Gastric acid secretion and vitamin B12 absorption after vertical Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 1993; 218:91-6. doi: 10.1097/00000658-199307000-00014.

Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999; 65:4799-807. doi: 10.1128/AEM.65.11.4799-4807.1999.

Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013 Jun;148(6):563-9. doi: 10.1001/jamasurg.2013.5.

Thomas V, Clark J, Doré J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. 2015; 10:1485-1504. doi: 10.2217/fmb.15.87.

Tremaroli V, et al. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism. 2015 August 4; 22:228-238. doi: 10.1016/j.cmet.2015.07.009.

Ulker I., Yildiran H. The Effects of Bariatric Surgery on Gut Microbiota in Patients with Obesity: A Review of the Literature. Biosci Microbiota Food Health. 2018 Oct 27; 38:3-9. doi: 10.12938/bmfh.18-018.

Verger EO, Aron-Wisnewsky J, Dao MC, et al. Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up. Obes Surg. 2016; 26:785-96. doi: 10.1007/s11695-015-1803-7.

Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009 Mar; 19(3):357-62. doi: 10.1007/s11695-008-9688-3

WHO: Obesity. [Internet].

Yi-Chih Lee and Wei-Li Wu, Shared Decision Making and Choice for Bariatric Surgery. Int. J. Environ. Res. Public Health. 2019 Dec 6; 16(24):4966. doi: 10.3390/ijerph16244966.

Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009; 106:2365-70. doi: 10.1073/pnas.0812600106.