Comparative analysis of sleeve gastrectomy with transit bipartition versus single anastomosis sleeve ileal bypass in morbidly obese patients with type 2 diabetes: a retrospective cohort study

Authors

DOI:

https://doi.org/10.30978/GS-2025-4-34

Keywords:

sleeve gastrectomy with transit bipartition, Santoro operation, single anastomosis sleeve ileal bypass, SASI, morbidly obese patients, type 2 diabetes mellitus

Abstract

Objective – to compare the effectiveness of sleeve gastrectomy (SG) + transit bipartition (TB) and the novel metabolic procedure, sleeve gastrectomy with single anastomosis sleeve ileal bypass (SASI), in the treatment of morbidly obese patients with type 2 diabetes mellitus (T2DM).

Materials and methods. A retrospective cohort study was conducted among morbidly obese patients with T2DM who underwent bariatric surgical procedures, specifically SG+TB and SASI, between September 2013 and December 2024 at the study hospital. Exclusion criteria included a history of previous bariatric surgery, upper laparotomy, severe comorbidities (ASA III – IV), and psychological instability. A total of 33 patients who underwent metabolic surgery for T2DM were divided into two groups: Group I underwent SG+TB, and Group II underwent the SASI operation. The mean age of patients was 42.6 years (range: 26 to 64 years), with a mean preoperative weight of 107.5 kg (range: 92.0 – 189.5 kg), a mean preoperative body mass index of 43.2 kg/m2 (range: 36.7 – 65.0 kg/m2), and a mean excess weight of 50.8 kg (range: 28 – 106 kg). The average duration of metabolic disease before surgery was 7.5 years (range: 3 – 21 years). The mean preoperative glycaemia was 11.8 mmol/L (range: 6.5 to 23 mmol/L), and the mean glycated hemoglobin (HbA1c) was 7.6% (range: 6.5 – 13.2%). The primary outcomes were the percentage of excess weight loss (%EWL), resolution of diabetes, and improvement of comorbidities. The secondary outcome was postoperative nutritional status.

Results. A cohort of 33 patients had a follow-up period of 12 to 48 months. After the Santoro operation, excess weight loss (EWL) was 72% at 6 months, 88% at 1 year, 92% at 2 years, and 86% at 4 years. After the SASI operation, EWL was 76% at 6 months, 89% at 1 year, 93% at 2 years, and 82% at 4 years. Complete resolution of diabetes occurred in all patients within the first 6 months postoperatively. Mean postoperative glycemic and HbA1c levels normalized at 1 year postoperatively. Disease control was defined as achieving normal HbA1c levels (< 6%). Among insulin-dependent patients, 76% achieved disease control during the 12- to 48-month follow-up. Patients receiving oral treatment reduced HbA1c to < 6% in 100% of cases at 1 year postoperatively and in 89% of cases over the subsequent 5 years. Two years postoperatively, the mean total protein concentration was 7.7±1.7 g/dL in Group I and 7.2±1.5 g/dL in Group II (p > 0.1). The mean albumin concentration was 4.1±0.6 g/ dL in Group I and 4.0±0.8 g/dL in Group II. The mean daily bowel movement frequency was 1.6±1.8 in both groups.

Conclusions. The novel procedure – single anastomosis sleeve ileal bypass – demonstrates effectiveness as a less invasive surgical treatment for morbid obesity and T2DM. It is expedient to conduct further investigations to evaluate the efficacy of this method and to establish clear indications and contradictions for SASI.

 

Author Biographies

V. V. Grubnik, Odesa National Medical University

MD, Prof., Dr. Sci. (Med), Head of the Department of Surgery and Postgraduate Education

O. V. Medvedev, Odesa National Medical University

Assist. Prof., Department of Surgery and Postgraduate Education

V. V. Grubnyk, Odesa National Medical University

PhD (Med.), Assist. Prof., Department of Surgery and Postgraduate Education

References

Beymer, C., Kowdley, K. K., Larson, A., et al. Prevalence and predictors of asymptomatic liver disease in patients undergoing gastric bypass surgery. Arch. Surg. 2003;138:1240–1244. http://doi.org/10.1001/archsurg.138.11.1240.

Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009 Mar;122(3):248-256.e5. http://doi.org/10.1016/j.amjmed.2008.09.041. PMID: 19272486.

Castillo J, Fábrega E, Escalante CF, Sanjuan JC, Herrera L, Hernánz F, Martino E, Casafont F, Gómez Fleitas M. Liver transplantation in a case of steatohepatitis and subacute hepatic failure after biliopancreatic diversion for morbid obesity. Obes Surg. 2001 Oct;11(5):640-2. http://doi.org/10.1381/09608920160557174. PMID: 11594111.

Gagner M. Laparoscopic revisional surgery after malabsorptive procedures in Bariatric surgery, more specifically after duodenal switch. Surg Laparosc. Endosc. Percutan Tech. 2010;20:344–347. http://doi.org/10.1097/SLE.0b013e3181f5aa05.

Gudzune KA, Huizinga MM, Chang HY, Asamoah V, Gadgil M, Clark JM. Screening and diagnosis of micronutrient deficiencies before and after bariatric surgery. Obes Surg. 2013 Oct;23(10):1581-9. http://doi.org/10.1007/s11695-013-0919-x. PMID: 23515975; PMCID: PMC3740071.

Haber GB, Heaton KW, Murphy D, Burroughs LF. Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose, and serum-insulin. Lancet. 1977 Oct 1;2(8040):679-82. http://doi.org/10.1016/s0140-6736(77)90494-9. PMID: 71495.

Hess DS, Hess DW, Oakley RS. The biliopancreatic diversion with the duodenal switch: results beyond 10 years. Obes Surg. 2005 Mar;15(3):408-16. http://doi.org/10.1381/0960892053576695. PMID: 15826478.

Higa K, Ho T, Tercero F, Yunus T, Boone KB. Laparoscopic Roux-en-Y gastric bypass: 10-year follow-up. Surg Obes Relat Dis. 2011 Jul-Aug;7(4):516-25. http://doi.org/10.1016/j.soard.2010.10.019. Epub 2010 Nov 26. PMID: 21333610.

Irwin N, Flatt PR. Evidence for beneficial effects of compromised gastric inhibitory polypeptide action in obesity-related diabetes and possible therapeutic implications. Diabetologia. 2009;52:1724–1731. http://doi.org/10.1007/s00125-009-1422-8.

Jenkins DJ, Wolever TM, Taylor RH, Ghafari H, Jenkins AL, Barker H, Jenkins MJ. Rate of digestion of foods and postprandial glycaemia in normal and diabetic subjects. Br Med J. 1980 Jul 5;281(6232):14-7. http://doi.org/10.1136/bmj.281.6232.14. PMID: 7407477; PMCID: PMC1713732.

Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247:401–407. http://doi.org/10.1097/SLA.0b013e318156f012.

Lee WJ, Almulaifi AM, Tsou JJ, et al. Duodenal-jejunal bypass with sleeve gastrectomy versus the sleeve gastrectomy procedure alone: the role of duodenal exclusion. Surg Obes Relat Dis. 2015;11(4):765–70. http://doi.org/10.1016/j.soard.2014.12.017.

Lee WJ, Lee YC, Ser KH, Chen SC, Chen JC, Su YH. Revisional surgery for laparoscopic minigastric bypass. Surg Obes Relat Dis. 2011 Jul-Aug;7(4):486-91. http://doi.org/10.1016/j.soard.2010.10.012. Epub 2010 Oct 30. PMID: 21159561.

Lugari R, Dei Cas A, Ugolotti D, et al. Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human type 2 (non insulin dependent) diabetes. Horm Metab Res. 2002;34:150–154. http://doi.org/10.1055/s-2002-23199.

Lugari, R., Dei Cas, A., Ugolotti, D., et al. Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human type 2 (non-insulin-dependent) diabetes. Horm. Metab. Res. 2002;34:150–154. http://doi.org/10.1055/s-2002-23199.

Lund A, Vilsbøll T, Bagger JI, et al. The separate and combined impact of the intestinal hormones, GIP, GLP-1 and GLP-2, on glucagon secretion in type 2 diabetes. Am J Physiol Endocrinol Metab. 2011;300:E1038–E1046. http://doi.org/10.1152/ajpendo.00665.2010.

Lustig RH. The neuroendocrinology of obesity. Endocrinol Metab Clin North Am. 2001 Sep;30(3):765-85. http://doi.org/10.1016/s0889-8529(05)70211-5. PMID: 11571940.

Mahdy T, Al Wahedi A, Schou C. Efficacy of single anastomosis sleeve ileal (SASI) bypass for type-2 diabetic morbid obese patients: Gastric bipartition, a new metabolic surgery procedure. A retrospective cohort study. Int J Surg. 2016;34:28–34. http://doi.org/10.1016/j.ijsu.2016.08.018.

Mason EE. Ileal transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg. 1999;9:223–228. http://doi.org/10.1381/096089299765553070.

Mentis N, Vardarli I, Köthe LD, Holst JJ, Deacon CF, Theodorakis M, Meier JJ, Nauck MA. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes. 2011 Apr;60(4):1270-6. http://doi.org/10.2337/db10-1332. Epub 2011 Feb 17. PMID: 21330636; PMCID: PMC3064100.

Mithieux G. Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production. Nutr. Hosp. 2013;28:109–114. http://doi.org/10.3305/nh.2013.28.sup2.6721.

Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku A, Tsuda K, Toyokuni S, Hiai H, Mizunoya W, Fushiki T, Holst JJ, Makino M, Tashita A, Kobara Y, Tsubamoto Y, Jinnouchi T, Jomori T, Seino Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002 Jul;8(7):738-42. http://doi.org/10.1038/nm727. Epub 2002 Jun 17. PMID: 12068290.

Montgomery IA, Irwin N, Flatt PR. Active immunization against (Pro)GIP improves metabolic status in high-fat-fed mice. Diabetes Obes Metab. 2010;12:744–751. http://doi.org/10.1111/j.1463-1326.2010.01228.x.

Muccioli G, Tschöp M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol. 2002 Apr 12;440(2-3):235-54. http://doi.org/10.1016/s0014-2999(02)01432-2. PMID: 12007539.

Naslund E, Gryback P, Hellstrom PM, et al. Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int J Obes Relat Metab Disord. 1997;21:387–392. http://doi.org/10.1038/sj.ijo.0800418.

Oben J, Morgan L, Fletcher J, et al. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol. 1991;130:267–272. http://doi.org/10.1677/joe.0.1300267.

Plaisancié P, Dumoulin V, Chayvialle JA, Cuber JC. Luminal glucagon-like peptide-1(7-36) amide-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol. 1995 Jun;145(3):521-6. http://doi.org/10.1677/joe.0.1450521. PMID: 7636436.

Ranganath LR, Beety JM, Morgan LM, et al. Attenuated GLP-1 secretion in obesity: cause or consequence? Gut. 1996;38:916–919. http://doi.org/10.1136/gut.38.6.916.

Ranganath, L. R., Beety, J. M., Morgan, L. M., et al. Attenuated GLP-1 secretion in obesity: cause or consequence? Gut. 1996;38:916–919. http://doi.org/10.1136/gut.38.6.916.

Roberts RE, Glicksman C, Alagband-Zadeh J, et al. The relationship between postprandial bile acid concentration, GLP-1, PYY and ghrelin. Clin Endocrinol. 2011;74:67–72. http://doi.org/10.1111/j.1365-2265.2010.03886.x.

Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006 Nov;244(5):741-9. http://doi.org/10.1097/01.sla.0000224726.61448.1b. PMID: 17060767; PMCID: PMC1856597.

Rutledge R. The mini-gastric bypass: experience with the first 1,274 cases. Obes Surg. 2001 Jun;11(3):276-80. http://doi.org/10.1381/096089201321336584. PMID: 11433900.

Sánchez-Pernaute A, Herrera MA, Pérez-Aguirre ME, Talavera P, Cabrerizo L, Matía P, Díez-Valladares L, Barabash A, Martín-Antona E, García-Botella A, Garcia-Almenta EM, Torres A. Single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). One to three-year follow-up. Obes Surg. 2010 Dec;20(12):1720-6. http://doi.org/10.1007/s11695-010-0247-3. PMID: 20798995.

Santoro, S. From bariatric to pure metabolic surgery: new concepts on the rise. Ann. Surg. 2015;262:e79–e80. http://doi.org/10.1097/SLA.0000000000000590.

Suárez Llanos JP, Fuentes Ferrer M, Alvarez-Sala-Walther L, García Bray B, Medina González L, Bretón Lesmes I, Moreno Esteban B. Protein malnutrition after gastric bypass incidence versus comparison biliopancreatic diversion. Nutr Hosp. 2015 Jul 1;32(1):80-6. http://doi.org/10.3305/nh.2015.32.1.8963. PMID: 26262700.

Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord. 2001;25(suppl 5):S42–S47. http://doi.org/10.1038/sj.ijo.0801912.

Wisen O, Johansson C. Gastrointestinal function in obesity: motility, secretion and absorption following a liquid meal test. Metabolism. 1992;41:390–395. http://doi.org/10.1016/0026-0495(92)90073-J.

Yska JP, van Roon EN, de Boer A, Leufkens HG, Wilffert B, de Heide LJ, de Vries F, Lalmohamed A. Remission of Type 2 Diabetes Mellitus in Patients After Different Types of Bariatric Surgery: A Population-Based Cohort Study in the United Kingdom. JAMA Surg. 2015 Dec;150(12):1126-33. http://doi.org/10.1001/jamasurg.2015.2398. PMID: 26422580.

Downloads

Published

2025-12-30

How to Cite

1.
Grubnik V, Medvedev O, Grubnyk V. Comparative analysis of sleeve gastrectomy with transit bipartition versus single anastomosis sleeve ileal bypass in morbidly obese patients with type 2 diabetes: a retrospective cohort study. ЗХ [Internet]. 2025Dec.30 [cited 2026Feb.3];(4):34-41. Available from: http://generalsurgery.com.ua/article/view/349609

Issue

Section

Original Research